equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
O efeito Hall quântico, também chamado de efeito Hall quântico inteiro, é uma versão do efeito Hall em mecânica quântica, observado em sistemas bidimensionais de elétrons[nota 1] [1][2] submetidos a baixas temperaturas e fortes campos magnéticos, em que a condutividade Hall sofre certas transições quânticas para assumir valores quantizados:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Nessa expressão é o canal, é a tensão de Hall, é a carga do elétron e é a constante de Planck.[3]
Na teoria da probabilidade e na estatística, a distribuição de Poisson é uma distribuição de probabilidade discreta que expressa a probabilidade de um determinado número de eventos ocorrer em um intervalo fixo de tempo ou espaço se esses eventos ocorrerem com uma taxa média constante conhecida e independentemente do tempo desde o último evento.[1]
A distribuição foi descoberta por Siméon Denis Poisson (1781–1840) e publicada, conjuntamente com a sua teoria da probabilidade, em 1838 no seu trabalho Recherches sur la probabilité des jugements en matières criminelles et matière civile ("Pesquisa sobre a probabilidade em julgamentos sobre matérias criminais e civis"). O trabalho focava-se em certas variáveis aleatórias N que contavam, entre outras coisas, o número de ocorrências discretas de um certo fenômeno durante um intervalo de tempo de determinada duração. A probabilidade de que existam exactamente k ocorrências (k sendo um inteiro não negativo, k = 0, 1, 2, ...) é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde
- e é base do logaritmo natural (e = 2.71828...),
- k! é o fatorial de k,
- λ é um número real, igual ao número esperado de ocorrências que ocorrem num dado intervalo de tempo. Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usaríamos como modelo a distribuição de Poisson com λ=10/4= 2.5.
Como função de k, esta é a função de probabilidade. A distribuição de Poisson pode ser derivada como um caso limite da distribuição binomial.
Processo de Poisson
A distribuição de Poisson aparece em vários problemas físicos, com a seguinte formulação: considerando uma data inicial (t = 0), seja N(t) o número de eventos que ocorrem até uma certa data t. Por exemplo, N(t) pode ser um modelo para o número de impactos de asteroides maiores que um certo tamanho desde uma certa data de referência.
Uma aproximação que pode ser considerada é que a probabilidade de acontecer um evento em qualquer intervalo não depende (no sentido de independência estatística) da probabilidade de acontecer em qualquer outro intervalo disjunto.
Neste caso, a solução para o problema é o processo estocástico chamado de Processo de Poisson, para o qual vale:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
em que λ é uma constante (de unidade inversa da unidade do tempo)[carece de fontes].
Ou seja, o número de eventos até uma época qualquer t é uma distribuição de Poisson com parâmetro λ t.
Comentários
Postar um comentário